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Following several suggestions of Gribov we have examined the problem of gauge-fixing degeneracies in non-

Abelian gauge theories. First we modify the usual Faddeev-Popov prescription to take gauge-fixing

degeneracies into account. We obtain a formal expression for the generating functional which is invariant
under finite gauge transformations and which counts gauge-equivalent orbits only once. Next we examine the
instantaneous Coulomb interaction in the canonical formalism with the Coulomb-gauge condition. We find

that the spectrum of the Coulomb Green's function in an external monopole-hke field configuration has an
accumulation of negative-energy bound states at E = 0. Using semiclassical methods we show that this
accumulation phenomenon, which is closely linked with gauge-fixing degeneracies, modifies the usual
Coulomb propagator from (k)

' to Iki
' for small )k[. This confinement behavior depends only on

the long-range behavior of the field configuration. We thereby demonstrate the conjectured confinement
property of non-Abelian gauge theories in the Coulomb gauge.

I. INTRODUCTION

It has recently been observed by Gribov' that in
non-Abelian gauge theories, in contrast with Abe-
lian theories, standard gauge-fixing conditions of
the form

F'[A'„(x)] = 0, (1.1)

where A'„(x) is the gauge field, fail to uniquely
specify the gauge. For example, in the Coulomb
or Landau gauge one can find a continuous multi-
plicity of fields '~A'„all related by finite gauge
transformations g which satisfy +'[ ~A„(x)] =0.
In the quantum theory this gauge-fixing degeneracy
is dangerous because the gauge degrees of free-
dom are not to be quantized and must be completely
removed. Usually, the gauge-fixing condition is
thought to specify uniquely the field for canonical
quantization and to ensure that gauge-equivalent
field configurations are not counted separately in
the path-integral formalism. The observation of a
gauge-fixing degeneracy implies that the naive
canonical procedure fails and that the usual Fad-
deev-Popov' prescription for the path integral is
incomplete at least in the Coulomb and Landau
gauges.

The Feynman rules for the perturbative expan-
sion of the amplitudes are insensitive to the behav-
ior of the theory under finite gauge transforma-
tions. Moreover, it is known that non-Abelian
gauge theories are not Borel summable' and that
the perturbative expansion is not the complete so-

s;A';(x) = 0. (1.2)

The gauge-fixing degeneracies associated with the
Coulomb gauge have been studied by Gribov' in
terms of the "pendulum equation" which is also
discussed by Wadia and Yoneya. ' We review their
work here.

For the SU(2) gauge theory the field is

and we set g= 1 in what follows (it is easily re-
covered). In the canonical procedure' the trans-
verse components of A'; and F'„are conjugate

lution to the theory. The failure of the Borel sum
to define the theory and gauge-fixing degeneracy
are correlated phenomena.

In this article we examine the gauge-fixing de-
generacy further. First, we reexamine the usual
Faddeev-Popov prescription, show how it can fail,
and then give a modified prescription that takes
gauge-fixing degeneracies into account. In particu-
lar, while the Faddeev-Popov prescription works
for infinitesimal gauge transformations, it fails
for finite ones i'f the degeneracy is present. The
generating functional must be invariant under finite
as well as infinitesimal gauge transformations.
We give a formal prescription that satisfies this
and which counts each gauge-equivalent orbit only
once in the sum over paths.

Second, we examine, in the canonical procedure,
the instantaneous Coulomb interaction. In this
case we impose the Coulomb-gauge condition
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variables. Here

pa Tpa +L~a
Of Oi Oi &

with

(1.4)

(1.5)

Hence

L a a T a a+g =-~u

and

a -aB]=2

The Hamiltonian is

(1.6)

H =-,' d'x [(E',.)'+ {8',)'+ (V, p')'],

where the last term is the instantaneous Coulomb
interaction. This can be written in terms of the
independent variables A. '; and F. ,

" using

p'(x, t) = d'y D"(x, y;A)c 'A'„(y, t) E~(y, t),

(1.8)

where the Green's function D"(x,y;A) is the solu-
tion to

8, D, (A)D" = (a,.a;5"+ e"'A'„s,)D"(x, y;A)

=5' 5'(x -y).
ID contrast with the Abelian gauge theory, this

Green's function depends on the field strength A';.
We may represent the Green's function as

V '„(x;A)V'„*(y;A)

where V'„(x;A) are the eigenfunctions of the opera-
tor s;D, (A):

8; D, (A) „V( ;xA)= E„V'„(x;A) . - (1.10)

P V'„(x;A)V~(y;A) = 6"6'(x -y)

and

d'x V'„(x;A)V'*(x;A) = 5„„.

We have examined the Coulomb propagator
Green's function D" in the presence of external
monopole-like configurations of the gauge field of
the form

A';(x) = e;', x, f{r)/r', r'= x'

8,.A',.(x) =0. (1.12)

A sufficient condition for finite energy is that f(r)

The functions V'„(x;A) are complete and normalized
according to

approaches a constant as r-~ and that f(0) =0 or
f(0) = 2. Our major result is that for f(~) & + the
field A'; is strong enough to produce an infinite
number of negative-energy bound states in the
propagator D". Semiclassical estimates imply
that the bound-state energy levels accumulate at
E„=O like E„--~E,~e ", where p is a constant.
This accumulation phenomenon is independent of
the deta, ils of the field configuration A', (x) for fin-
ite

~ x~ &~. It depends only on the long-range in-
frared tail of the field configuration.

After integrating over all positions of the ex-
ternal source to restore translation invariance and
integrating over isospin directions to restore SU(2)
invariance, we find that the accumulation phenom-
enon produces a small-~k~ singularity in the Fou-
rier transform D' (k) of the form ~k~ ', which in-
dicates a confining potential. Gribov' has specu-
lated that this propagator becomes singular as ~k~

0 and our calculation fulfills this conjecture in
detail.

This result is in sharp contrast with the usual
~k~

' Coulomb behavior which is obtained from con-
figurations that do not give rise to level accumula-
tion. We conclude that, at least in the Coulomb
gauge, confinement is caused by field configura-
tions that produce an infinite number of bound
states in the Coulomb propagator. In this case the
instantaneous Coulomb interaction term (V; p')' in
the energy density grows at least linearly if one
separates the nonsinglet sources. We conclude,
with Gribov, that the spectrum of gauge theories
cannot contain free gluons or quarks. One can only
observe bound-state singlets.

Gauge-fixing degeneracy in the Coulomb gauge
amounts to the observation that there are many
field configurations related by finite gauge trans-
formations, all satisfying 9;A'; = 0. For example,
for the Ansatz (1.12), f= 0 and f= 2 are both pure
gauges. We find that some of these gauge-equiva-
lent configurations exhibit level accumulation and
confinement while others do not. So it would ap-
pear superficially that gauge-equivalent configura-
tions have different physics, an absurd conclusion.

The paradox is resolved by our generalization of
the Faddeev-Popov prescription which informs us
that we must sum over all configurations "A.' re-
lated by finite gauge transformations and divide by
n to obtain a generating functional which is invari-
ant under finite as well as under infinitesimal
gauge transformations and which counts gauge-
equivalent configurations only once. The physics
can appear to be different for different gauge-
equivalent configurations "A'„ if one restricts
oneself to infinitesimal gauge transformations.
For example, the Faddeev-Popov determinants,
det", evaluated by diagonalization for the config-
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11. GAUGE-FIXING DEGENERACIES
AND THE FADDEEV-POPOV PRESCRIPTION

The naive expression for the vacuum-vacuum
transition amplitude in gauge theories is

Z=N ' dA'„exp i Zd'x (2 1)

where

uration ~" P'„, can be quite different since this
evaluation takes into account only infinitesimal
variations of the gauge field under a gauge trans-
formation. Only by summing over all the gauge-
equivalent configurations does one guarantee in-
variance under the full gauge group. Consequently
those configurations exhibiting level accumulation
are to be included. Since they are infinite in num-
ber they will survive the averaging; they do not
comprise a get of measure zero in function space.

In this paper our entire discussion of confine-
ment is carried out in the Coulomb gauge. How-

ever, confinement is a gauge-independent phenom-
enon. Unfortunately, it is not clear how to observe
confinement in other gauges (such as the axial
gauge' in which degeneracy is evidently absent).
We have no progress to report on this difficult
problem.

FINITE GAUGE

TRANS FORMATION

ORBIT OF A GENERATED

BY FINITE GAUGE TRANSFORMATION

FIG. 1. Schematic representation of gauge-fixing
degeneracies in configuration space.

various possibilities, the simplest being that the
or/it intersects the hypersurface only once. Then
the usual Faddeev- Popov prescription is valid.
This is because the change in the gauge-fixing con-
dition (2.3) under infinitesimal gauge transforma-
tions is all that need be considered to guarantee
invariance of the generating functional under the
full gauge group.

In what follows we assume that under infinitesi-
mal gauge transfoimations the gauge is uniquely
specified by the gauge-fixing condition (2.3). This
is equivalent to assuming that there are no nor-
malizable zero eigenvalues in the spectrum of the
operator

Z(x) = =,' F'„„F'„„
and F'„„is given by (1.3). The action 2 is invari-
ant under local gauge transformations U(g):

where

5Ii '~A
(2.4)

A„' (A„)' = U(g) A„U '(g)+ i-U(g) a„U '(g), -

where

A„=A'„y'/2, U( g)U (g) = 1.

(2.2)

F'[A„(x)]= O. (2.3)

(This condition may, as we will discuss, fail to
a.ctua. lly fix the gauge. ) Equation (2.3) defines a
"hypersurface" on the manifold of. fields A„(see
Fig. 1). Next consider the orbit of A„generated
by the gauge transformation g; Then there are

This gauge transformation acting on a particular
field A„generates an orbit of fields A„all with
the same action S= JZd'x. This infinite variety
of possible paths all with the same phase leads to
an infinity in the generating functional Z. Faddeev
and Popov' showed that this infinity is proportional
to the volume fg, dg(x) in group space and is in-
dependent of the field A„, and hence it can be
lumped into the normalization factor ¹

The starting point is to consider a gauge-fixing
condition of the form

det '[0"(A)]= II dg( )II 5(F'[A'„( )]),

(2.5)

where the region of group integration I is limited
to infinitesimal transformations g= 1. One can
show that this determinant is invariant under in-
finitesimal gauge transformations:

det '[0' {A)]=det '[0"(A')], (2.6)

where g= 1. However, it is not invariant under
finite gauge transformations if there are gauge-
fixing degeneracies. This corresponds to the orbit

Ddb ~ gdb dc&Ac
V II '

Then the Faddeev-Popov determinant, evaluated
by diagonalization, will be nonvanishing. A nor-
malizable zero eigenvalue could only occur if there
were a special (unknown) symmetry or very spec-
ial field configurations and these would have no
measure in the functional integral. So this will be
a safe assumption.

The ordinary Faddeev-Popov determinant is de-
fined by
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of A„ intersecting the hypersurface many times
(see Fig. 1), where the intersections are connected
by finite gauge transformations. If one were to in-
sert the factor

1=d t[0"(A)] II dg( )II («(F'[A'( )]) (2. t)
x~a

into the generating functional (2.1), the resulting
expression would be invariant under infinitesimal
gauge transformations only. Furthermore, one
would count every intersection on the same orbit
once rather than recognizing that each intersection
lies on the same gauge-equivalent orbit. Conse-
quently, the usual prescription fails if there is a
gauge-fixing degeneracy under finite transforma-
tions.

For finite gauge transformations a modification
is required. Suppose, in the case of gauge-fixing
degeneracies, therearefields "'A„, n = 2, 3, 4, . . . ,
related to 'A„by finite gauge transformations
and satisfying

which is the gauge-invariant generating functional
in the case of gauge-fixing degeneracies. If the
5(F') function is satisfied more than once for
gauge-equivalent configurations, this overcounting
is compensated for by the sum over determinants
in the denominator. So the formal expression
(2.11) counts the gauge-equivalent orbits only once
and is invariant under finite gauge transforma-
tions.

In the case of gauge-fixing degeneracies it is not
possible to promote the determinant to ghost field
terms in the Lagrangian in the usual way. Hence,
the usual Feynman rules fail to specify the solu-
tion in the Coulomb and Landau gauges.

F'(A) = s;A; = 0. (3.1)

III. COULOMB-GAUGE DEGENERACIES

AND THE INSTANTANEOUS COULOMB INTERACTION

In the canonical formalism' the SU(2) gauge field
is fixed by the Coulomb-gauge condition

F'[~" «A] = 0. (2.8) The Hamiltonian is

(We a,ssume that the index n is discrete; in gener-
al it is a continuous variable, and sums have to be
replaced with integrations. ) Then the invariant ex-
pression over the full orbit is

H=2 dx F'; + B'a + V

with

(3.2)

g det '(0"['"«A]j= II dg(x) Q t«(F'[A'„(x)]),
n x x,a

(2.9)
where the group integration region II covers all
gauge transformations g. Each separate deter-
minant at n = 1, 2, . . . may be quite different; only
the sum (2.9) is invariant under all gauge trans-
formations. The separate determinants can be
evaluated for the configurations "A by the usual
diagonaliz ation.

Writing (2.9) as

II dg(x) II &(F'[A'„(x)])
Z„det '(0"[ "«A]j

(2.10)

F'„„=B„A'„—B,A ~
+ ' 'ApA', ,

E' = F'. + F'
Oi Oi Oi r

Fa ~ LFa LFa g pai Oi e Oa y (4

T a a a 1 aB;=~&;;aFg~

(3.3)

t«'(x, t) = d'y D"(x, y;A)e A'„(y, t) E~(y, t) .

The Green's function D"(x,y;A) is given by

(3 4)

and E'; and A'; are the canonically conjugate inde-
pendent variables. The operator p' appearing in
the instantaneous Coulomb interaction term is ex-
pressed in terms of the canonical variables as

and inserting this into (2.1) gives

Z=N ' dA„ Z„det '[0"( "'A)]

V'„(x;A)V„*'(y;A}
n n

where V'n satisfies

(3.5)

x qa

dg(x) [dA„]
1

" Z„det-'[0"('"A}]
x V(F'[A„(x)])e"

=N' '
dAA Z „det [0 ( A)]

a,. D, (A) V'„(x,A) =- (8, S, f"+ e"'A', S,)V'„(x,A)

E„(v, x)A- (3.6)

(3.7)

and the eigenfunctions are normalized and complete
according to

x t«{F'[A„(x)])e' (2.11) P V„(x}v'„'(y) =f"f'(x-y).
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We will examine in this section the behavior of
the Fourier transform of D"(x, y;A) in the pres-
ence of an external field A';. In order to restore
translation invariance, which requires that D' (x,
y;A) depend only on g —y~, we will integrate over
all possible positions c of the external field. If
V„(x;A) is the eigenfunction for the external field
A;(x) at position c = 0, then the translationally in-.

variant Green's function can be written as

n n

(3.8)

where V is the volume of the d'c integration. This
integration over c is a device that guarantees that
p in (1.8) is translation invariant as is required in
the full exact theory. (Note that we introduce an
infrared cutoff by this finite volume. ) The Fourier
transform of the propagator is then

G"(k) = 5"g(k') + k'k f(k')

A. ;'=UA;U '+iUB)U ', (3.14)

where U is the gauge transformation. Requiring
that

8;A) =0

implies that

D;(A)(U 'siU)=0.

(3.15)

(3.16)

A', (x) =e.„,~ f(r), r'= x (3.1 t)

which satisfy 9&A'; =0. Some special cases are

f(r) =0, 2 pure gauge,

f(r) =1 Wu-Yang monopole .
(3.18)

Hence, if there are nontrivial solutions Uw 1 for
field configurations A;, we have a gauge-fixirfg de-
generacy.

We restrict ourselves to field configurations of
the form

d'x e '" "D" x, o;A . (3.9)
A sufficient condition for infrared-finite energy H

is that

Next we integrate over all directions of isospin to
restore SU(2) invariance. The final result for the
propagator is

lim f(r) = constant
f'~ oo

(3.19)

and we impose this restriction. Ultraviolet-finite
energy can be obtained if

D"(k') =6"D(k') =j ' G"(k),

D(k') =g(k')+ 'k'f(k') . - (3.10)
f(0) =0, 2. (3.20)

The gauge transformation is assumed to take the
form

Denoting

V'„(x+c;A)= 2, e" *"V'„(k),~a ...
in(r) x.T jt'

and reguiarity at r = 0 requires that

(3.21)

substituting this into (3.5), and using (3.9) and
(3.10), the d c integration can be done. We obtain

D"(k') = 5"D(k')

(3.11)

The result of our calculation will be to show that

(3.12)

n(0) =nv . (3.22)

Equations (3.19), (3.20), and (3.22) are suitable
boundary conditions for our problem.

Substituting (3.17) and (3.21) into (3.16), we find
that the Ansatz are consistent and we obtain

(3.23)

The changed variable r = e' gives the pendulum
equation" (with damping)

n(t) + n(t) —sin[2n(t)] [1 —f(t)] = 0, (3.24)

9;A; =0, (3.13)

and consider a field A'; on the same orbit as A, :

which we interpret as confinement.
However, before we carry out this calculation we

discuss the gauge-fixing degeneracies of the Cou-
lomb gauge and review the work of Gribov' and the
pendulum equation of Wadia and Yoneya. ' Suppose
we have a field A; = 7'A';/2 that satisfies the Cou-
lomb-gauge condition

satisfying the boundary conditions n(-~) = nv and
(3.22). The potential energy of the pendulum is
V(n) =-2 sin n(t)[1-f(t)] (see Fig. 2).

For simplicity, we first consider the case f(t)
= constant. Note that if f&1 gravity points down-
ward and if f& 1 gravity points upward (see Fig. 2).
For large negative values of, t we can approximate
the pendulum equation by

ii(t) a(t) +—2(1-f)a(t) =0,
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INITIAL POSITION 2a(-m) = 2'Frn Y(r)
ll

f(m) & I

TES

Y(r)

f(m) & I .
UND STATES

f & I GRAVITY l
f & I GRAVITY

FIG. 2. Configuration of the pendulum for the
pendulum equation (3.24).

U(g) = 1+iV'(x)7', (3.25)

where a(t) = o.(t) nv -satisfies the boundary condi-
tion a(-~) =0. Thus, if f&1,

a(t) -Pe" (t--~),
where 5 = [—1+ (9 —8f)'t']/2. When t increases
a(t) becomes large and nonlinear effects become
important. Then the pendulum eventually stops at
the bottom a(+~) =w/2. Note that ~a(t)~ &w because
the initial kinetic energy is 0 [a(-~) =0].

On the other hand, if f&1, then when 1«f& —',, 5

is negative and when f& —', , Re 5 is negative. In
either case there are no nontrivial solutions obey-
ing our boundary condition.

It is clear from this example that for the zero-
field configuration, A',. =0, f=0, there exist fields
A,'-' also satisfying the Coulomb-gauge condition
and characterized by at least four independent pa-
rameters P and x„ the displacement of the gauge
transformation U(x) U(x+ xo). (So the Coulomb
vacuum is at least four-fold degenerate. ) If one
considers a t-dependent f(t), the situation is even
more complicated.

Next we consider the infinitesimal version of the
gauge transformations g= 1,

NO

(a) (b)

We assume, in what follows, that f(r) satisfies the
boundary conditions (3.19) and (3.20). If f ((})= 2

the spectrum is unbounded from below so we as-
sume that

f(0) = 0, f(~) = constant, (2.30)

and for simplicity that f(r) is monotonic. Then
two cases may be distinguished (as in the pendulum
problem): U f(~) & 1 there are no bound-state so-
lutions to the Schrodinger equation (3.29) [see Fig.
3(a)]; if f(~) & 1 there are bound states [see Fig.
3(b)]. This latter case contains interesting phys-
1cs.

It is not difficult to show that there is an accum-
ulation of bound-state energies if f(~) & —',. The
accumulation is dependent only on the large-r tail
of the potential. In general, level accumulation
occurs if V(r)- -y/r, providing that o, «2. To
show that in addition f(~) must be &+ for accum-
ulation to occur we set E =0 and the relevant po-
tential problem is

FIG. 3. The potential V(r) for the Schrodinger equation
(3.29) for the bvo cases f (~) & 1 (no bound states) and

f (~) & 1 (bound states).

where V'(x) parametrizes the transformation. The
requirement (3.16) that there exist other fields on
the orbit of A; satisfying the same Coulomb-gauge
condition for infinitesimal transformations is

y" (r)+ —,y(r) =O,

where we define

(3.31)

S, D;(A)V'(x) =0. (3.26) y=2[f(") —1]. (3.32)

Let us examine the eigenvalue equation

aI D;(A)V'(x) = -EV'(x) .
4~th the Ansatz

(3.27)

(3.28)

y" (r}+[E—V(r)] y(r) = O, (3.29)

we obtain from (3.27) the one-dimensional Schro-
dinger equation

Let y(r) =r' Then(3. .31) implies thats =-,'+ (~ —y}'~ .
Hence, if y &4, y(r) does not oscillate, and
if y& —,, y(r) oscillates. It is not difficult to see
that for y &~, y(r) has an infinite number of nodes.
For such one-dimensional potential problems, ag.
infinite number of nodes implies that there are in-
finitely many levels below E=O.' Therefore, the
requirement that y&-,' or f (~) &+ gives level ac-
cumulation.

%e also note that the Faddeev-Popov determin-
ant,

where we have suppressed the small parameter h
and where det(s,. D, ) = II (-E„), (3.33)
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has an infinite set of negative eigenvalues as a con-
sequence of the above remarks. This is simply a
special case of the general observation of Gribov'
that negative eigenvalues reflect gauge-fixing de-
generacies.

Finally, we proceed to the calculation of the
Coulomb Green's function D''(k2) = O' D(k') given
by (3.11). 'Ibe eigenfunctions V'„(x;A) = x'y „(r)/r'
and bound-state energies E„are just those associ-
ated with the Schrodinger equation (3.29),

(3.34)

with norma1ization (3.7)

altering any of our conclusions which depend only

on the large-r behavior.
For values of E near the accumulation point at

F.„=0 the turning point A is given approximately
by

(3.36)

Thus, A —~ as E-O.
The wave function y satisfying (3.34) may be ap-

proximated by three formulas which hold in each
of three regions. In the classically forbidden re-
gion III the wave function y(r) decays exponential-
ly:

d'x V', x V' x =4m dry„r y
0

(3.35)

r

y„, = C[V( ) —E] '&'exp(- [V(r') —E] ~ d't, '
A

(3.37)

For V(r) = 2[1 f(r)]/r—', f(~) & —', we have an ac-
cumulation of levels. Because there are an infinite
number of loosely bound states, the semiclassical
%KG approximation is appropriate to compute the
sum over levels. Furthermore, the semiclassical
analysis is insensitive to the precise details of the
potential V(r) for small r. Consequently, we may
examine simultaneously all configurations that ex-
hibit the accumulation phenomenon.

The potential V(r) =2[1-f(r)]/r', f(~) & —,
' is

plotted in Fig. 4 and the accumulation of levels is
indicated schematically. To simplify the subse-
quent analysis we will replace the actual potential
by one that has a steep wall at r = 0; this will
eliminate the turning point near the origin without

STATIONARY POINT AT

ro = ~r/Jk + IEI

where C is a normalization constant to be deter-
mined. In the classically allowed region I, y os-
cillates:

y, = 2C [E- V(r)] -"
A

&& sin g —V y' gy'+p 4
r

(3.38)

[E —V(r')]' 'dr' = (n+ —', )7[ (n =0, 1, 2, . . . ) .

In the turning-point region II about A y(x) is given
in terms of an Airy function that smoothly inter-
polates between y, and y,„'.

C~ 25/6 /[2( E) -i/

Ai[2' 'y ' '(-E)'/'(r —A)] . (3.39)

The eigenvalues are determined by the boundary
condition that y(r) vanish at r=0. Setting y, (0) =0
gives

ACCUMULATION

OF LEVELS AT

E~=0
NING
INT

TURNING
POINT

TURNING-
POINT REGION

(3.40)

To observe the accumulation phenomenon we re-
place the lower limit of integration by 8 &0, where
to a good approximation

V(r) - y/r' (B &r &A)-.

Then for large n we have

A

nv —
Wy f dr(r-' A-'}'"

B

CI ASSICALLY ALLOWED

REGION

ra

CLASSICALLY

FORBIDDEN
REGION

/A

(1 x2) x/2

ck ~

FIG. 4. The potential V (r) in (3.29) with f (~) & &9,
showing the features of the WEB analysis: the accmn. —
ulation of levels at E„=0, the classically allowed and
forbidden r egions, the turning points, and the stationary-
phas e point.

—Wyln(Bv' E) - nv . -
The density of states is

(3.41)

This integral is logarithmicaQy divergent as A.

SO
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P(E) =
dE

X/2

»IEI (3.42)

Consequently, the sum over levels near 8= 0 in
(3.11) (that is to say, the sum over large n) can be
replaced by the integral

Next we compute the normalization constant C
in (3.37)-(3.39). The constant C is determined by
the condition (3.34)

1 = 4m dx y-'(r
0

dE
E

a result we will shortly use.

(3.43)
The only significant contribution to this integral
comes from r in region I because outside this re-
gion the wave function is exponentially small. Us-
ing (3.38) we have

1= 16yC
I
E —V(r')]'/'dr'+ /4

The sin' factor oscillates rapidly in the integration
interval when n is large so we may approximate it
by its average value 2. Also, we may insert a
lower limit of integration 8 above which V(r)
- -y/r':

SIC' " dr
(1/r' —1/A ') '/'

Performing the angular integrations we obtain

k'V(k) = d'x e'"'"'", y(r)

kr kr= 4vN dr y(r) —sin ——cos-
kr

(3.45)

To evaluate this integral for small fi we use the
method of stationary phase, which we summarize
as follows: Consider the integral

8 +2C2
Ii —(II/A)']'" dxf(x) ' "" (3.46)

Now if we let E-0 (A-~), we obtain

8~~' (3.44)

k'V(k) = V'(k) = d'x e'"' "~ —,y(r) .

Next we must compute the Fourier transform of
the wave function V'(x) = x'y(r)/r' [see (3.11)]:

If Q'(x) is nonvanishing between a and b then

I - O(k) .
However, if q'(x, ) =0, but @"(x/040, a& x, &b

(x, is called a stationary point), then

I O(WP1 ) ~

Explicitly, the contribution to I from the region
surrounding the stationary point xo is

' f(*)( „exe[,ii (*,)/4 ~ /4] ii 0"(*,)
XQ

2m@
/(x, ) ( „e0()0(,)/0 —i /4] 4 0 "(*,) 0.

0

(3.47)

Now we return to (3.45) and recall that we have
suppressed a. factor of I/8 preceding the integral
in (3.38) because we suppressed 8 in the Schro-
dinger equation (3.33). Since y(r) is oscillatory in
region I, a stationary-phase point exists. In re-
gions II and III the wave function y(r) is exponen-
tially damped so no stationary-phase point exists

k'V(k) - 4mfii

Using (3.38) we obtain
(3.48)

and these regions make negligible contributions as
A- 0. Theref ore
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k'v(k} - -23vlc
A

( )/h + z
e' /++i~ (

[E —V(r)]"' kr

where

P, (r) =~kr+ [E —V(r')]' dr' .

-4v'Eicos[4), (r,)]- (kr, ) ' sin[/, (r,)]]2
V(k) ' =

k4'(k2 E)3/2
'

)

(3.52)

Stationary points r0 must satisfy

y', (r,) =+k - [E—V(r,)]'"= 0. (3.49)

But k & 0, so [t] (r) has no stationary points and we
need only consider P, (r) when k is small. There
are in fact two real solutions r2 to (3.49), one lo-
cated near r = 0 and the other given approximately
by

O' E

V)(r ) (k2 E)3/22
0 (3.51)

Observe that as E and k approach 0, V'(r, ) be-
comes large and can produce a singularity in
(3.50). At the other stationary point near r =0,
V'(r, ) does not vanish as E and k approach 0.
Therefore, this point does not produce a singular-
ity and we need not consider it further.

Combining (3.44), (3.50), and (3.51) gives

where P is near 0, which lies just to the left of
the turning point at /t (see Fig. 4). Note also that
by virtue of (3.48),

~„( )
V'(rp)

2k

Therefore, using (3.47) we have for each stationary
point r„a contribution to (3.48} of the form

(4vtf)'"C3
k'V(k) =

[V,(

k s' [)'.(,)/2] —sos[), [ g/S]I.
0

(3.50)

For large r the behavior of the potential is V(r)
y/r' Ther-efore. , V'(r) —2y/r' and

where we have set k= 1 because our semiclassical
approximations are completed.

Besides the accumulation of bound states at E = 0
there is a continuum of positive-energy states be-
ginning at E = 0 and these are also to be included in
the sum on states. To treat the continuum we first
discretize the spectrum by putting the system in a
box of length L = (3V/47[)' ' corresponding to our
infrared cutoff. Then the maximum positive energy
is E,„=k' —y/L' If .one computes the density of
states and the normalization constant C(E) for the
continuum they are separately L dependent; but
the combination C'dn/dE = (167[') ' that enters the
calculation is L independent. The amplitude
~v(k)~ for the continuum E&0 is the same as
(3.52) with the phase factor given in terms of the
variable x = E/k',

y '"y, (r,) = (1+xk'I. '/y) '"

(L ky '/ ) [1+(1- x) '
]

1+ (1+ xk'I '/y)'/'

(3.53a)

in the continuum E ~ 0, x & -y/L'k' and

(3.53b)

for the bound-state region E s 0, x ~ y/L'k'. -
Since these expressions interpolate continuously
in E from the bound states to the continuum region
our calculation for the sum on levels can be given
in terms of a single integral over E from some
bound-state energy -E, to the maximum continuum
energy Em» = k' —y/L'.

We now have all the ingredients required to com-
pute the Green's function D' (k) =O' D(k) given by
(3.11). Using (3.52), (3.43), and the definition
V '(k) = k'V(k) we obtain

d ]1-x
3/2 cos&, (r,) —t /~ sin[t), (r,)S0/02

/' )/2 2.

0

Let E = xk; then

2+ 1/2 j.-y/L 2p2

(3.54)

(3.55)
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The final step is to let the infrared cutoff L -~
with k held fixed. Then x-1 or E,„-k' as re-
quired. The result from (3.55) is

2pL("')" 3Vk'
(3.56)

V(r) d'k e'"' [k('[D(k2) ['.

The variable k can be small with the restriction
k&L '. In a pure gauge theory there is no length

scale so I, can be picked to set the scale -(GeV) '.
Had there been no accumulation of levels the in-

tegral in (3.54) would have been finite and the prop-
agator D(k) would have had the conventional be-
havior D(k) - k ' (k-0). Our result in (3.56) cor-
responds to a confining potential.

The potential in configuration space correspond-
ing to the propagator can be gotten from the ex-
pression for the Hamiltonian (1.7). The result is

situation all the potentials '"«A (n = 1, 2, . . .) are to
be treated on the same footing insofar as they obey
the same gauge condition and are transformed to
each other.

Thus, in general, large ~' A's and small A's
are lumped together to form a set f"A) corres-
ponding to a given F„,. Any breakup of such a set
of potentials leads to results which are noninvari-
ant under global gauge transformations. In partic-
ular, the ordinary Feynman perturbation theory is
noninvariant because it singles out a small A out

of each set of potentials (i"«A). In this way the re-
quirement of gauge invariance under a full non-

Abelian group necessarily forces us to a nonper-
turbative and global treatment of gauge fields.

Here the crucial fact is that the individual func-
tional determinants,

deters;

D;(i"«A)], strongly de-
pend on "'A, although their sum,

g det '[s; D, ("A)], (4.3)

Regulating the singularity at k=0 in (3.55) accord-
ing to

k'- (k'+a')'

and neglecting logarithms, this potential corres-
ponds to an interaction of the form

is globally gauge invariant. Similarly the instan-
taneous Coulomb force is dependent on "A. For a
given field F„, one may consider a "net" Coulomb
potential,

between the isotopic sources. Possibly Debye
screening could reduce this r' potential to the
phenomenologically successful linear potential,

Coulomb force due to E„,

-~ P Coulomb force due to '" (4.4)

o. (0) =nw, u(~) =(~z+n)««, (4.2)

which transform A', = «',
&

(x;/r') f with f(~) & 1 into
A,"- «', &(x&/r )(2-f) (r- ~). Thus, in the pres-
ence of gauge-fixing indeterminacy, strong and
weak potentials are in general transformed into
each other and we cannot make any distinction be-
tween them in a gauge-invariant way. In such a

IV. CONCLUSIONS

We have seen that for sufficiently "strong" po-
tentials A';= «',

&
(x,/r') f(r) with f(~) & —'„ instan-

taneous Coulomb interactions become singular and

give rise to a confining force between color-non-
singlet objects. On the other hand, in the case of
"weak" potentials A with f(~) &, there is no ac-
cumulation of levels and the ghost propagator re-
mains nonsingular.

Apparently there exist finite gauge transforma-
tions which transform "small" and "large" poten-
tials into each other while preserving the Coulomb-
gauge condition. In fact the pendulum equation in
Sec. III gives gauge transformations

t'XU= exp in(r) (4.1)

where the curl of "A gives F„,. Hence, if in this
set of potentials there are sufficiently many '"A's
which give rise to a singular Coulomb force, we
will obtain an averaged confining potential.

There is no known solution to the gauge field
equations which gives a nonzero tunneling ampli-
tude between the vacuums of integral and half-in-
tegral winding number. (Instantons interpolate be-
tween n and n+1.) If the tunneling amplitude is
indeed zero between n and n+ 2 we have a super-
selection rule and confinement occurs only for the
sector built from the vacuums of half-intergral
winding number. Possibly widely separated pairs
with half-integral winding number also give con-
finement.

The importance of half-integral charge for con-
finement has also been noticed by Callan, Dashen,
and Gross. ' Significantly the potential they find
between static colored sources is r', the same as
our result. So it is likely that these two approach-
es are closely related.

In this paper we have found that "large"
transverse gauge fields give rise to confine-
ment. Since we do not yet know in general
what portion of the whole functional space of A is
occupied by these configurations our argument for
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confinement is incomplete. It is indeed possible
that there exist other configurations which alter or
destroy this confinement effect. However, our
purpose in this paper is to present a plausible
mechanism for confinement. One might try to ex-
tend our argument by including other configura-
tions such as multimonopoles, higher angular ex-
citations, and so on. However, we do not expect
that the qualitative results of this paper will be
dramatically altered; the existence of gauge inde-
terminacy and level accumulation gives strong
support to the view that the spectrum of non-Abe-
lian gauge theories is entirely different from that
of perturbation theory;
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